CONTENTS

1 Managing Safety Standards ... 3
 1.1 Responsibilities .. 3
 1.2 Preparation of Hazardous Scene Management Plan 3
 1.3 Specialist Teams ... 4

2 Potential Hazards .. 4
 2.1 Hazards in the laboratory ... 4
 2.2 Hazards associated with forensic procedures 5
 2.3 Hazards at scenes ... 5

3 Policy for the use of Protective Equipment ... 5
 3.1 General ... 5
 3.2 Use of PPE when working with chemical hazardous substances 5
 3.3 Use of PPE when working with biologically contaminated items 6
 3.4 Use of PPE when working in the field ... 6

4 Laboratory Safety Precautions ... 7
 4.1 Eating, smoking and cosmetic application 7
 4.2 Evacuation Plans and safety equipment signage 7
 4.3 Maintenance of safety equipment .. 8
 4.4 Visitor Inductions ... 9

5 Biological Hazards .. 9
 5.1 CBR incidents ... 9
 5.2 Safe handling of biologically hazardous substances 10
 5.3 Biological spills ... 10
 5.4 Treatment of exposures to blood bodily/fluids 11
 5.5 Routine cleaning and disinfection procedures 11
 5.6 Immunisation Policy ... 11

6 Chemical Hazards .. 11
 6.1 CBR incidents .. 12
 6.2 Safe handling of chemicals/reagents .. 12
 6.3 Safety Data Sheets (SDS) .. 12
 6.4 Labelling of Reagents ... 13
 6.5 Storage of chemicals and reagents .. 13
 6.6 Chemical spills .. 14
 6.7 First aid response for chemical exposure 15
 6.8 Lead contamination ... 16

7 Waste Disposal .. 16
 7.1 Chemical waste ... 16
 7.2 Biological waste and sharps ... 17
 7.3 Uncontaminated waste ... 17

8 Asbestos Hazards (and other Dusts) ... 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Risk management during a fire involving an ACM structure</td>
</tr>
<tr>
<td>8.2</td>
<td>Identification of asbestos or ACM</td>
</tr>
<tr>
<td>8.3</td>
<td>Preparation of management plan to address asbestos risk</td>
</tr>
<tr>
<td>8.4</td>
<td>PPE to prevent exposure to Asbestos</td>
</tr>
<tr>
<td>8.5</td>
<td>Decontamination and waste management protocols</td>
</tr>
<tr>
<td>9</td>
<td>Radiological Hazards</td>
</tr>
<tr>
<td>10</td>
<td>Explosive Hazards</td>
</tr>
<tr>
<td>11</td>
<td>Physical Hazards</td>
</tr>
<tr>
<td>11.1</td>
<td>Handling sharps</td>
</tr>
<tr>
<td>11.2</td>
<td>Use of vehicle hoists</td>
</tr>
<tr>
<td>11.3</td>
<td>Handling of firearms</td>
</tr>
<tr>
<td>11.4</td>
<td>Hazardous Manual Tasks</td>
</tr>
<tr>
<td>12</td>
<td>Trip and Fall Hazards Including Working at Heights</td>
</tr>
<tr>
<td>12.1</td>
<td>Identification of trip or fall hazards</td>
</tr>
<tr>
<td>12.2</td>
<td>Managing slip and trip hazards</td>
</tr>
<tr>
<td>12.3</td>
<td>Managing hazards associated with holes, shafts, and other penetrations</td>
</tr>
<tr>
<td>12.4</td>
<td>Managing hazards associated with working at heights</td>
</tr>
<tr>
<td>12.5</td>
<td>Safe Use of Ladders</td>
</tr>
<tr>
<td>12.6</td>
<td>Managing structural hazards</td>
</tr>
<tr>
<td>13</td>
<td>Working in Mines</td>
</tr>
<tr>
<td>14</td>
<td>Working in Confined Spaces</td>
</tr>
<tr>
<td>14.1</td>
<td>Risks of working in confined spaces</td>
</tr>
<tr>
<td>14.2</td>
<td>Identification of confined space hazard</td>
</tr>
<tr>
<td>14.3</td>
<td>Development of Hazardous Scene Examination Plans for confined spaces</td>
</tr>
<tr>
<td>15</td>
<td>Ultraviolet Light</td>
</tr>
<tr>
<td>15.1</td>
<td>Sun exposure</td>
</tr>
<tr>
<td>15.2</td>
<td>Safe use of forensic light sources</td>
</tr>
<tr>
<td>15.3</td>
<td>Safe use of UV decontamination lights</td>
</tr>
<tr>
<td>16</td>
<td>Electrical Hazards</td>
</tr>
<tr>
<td>16.1</td>
<td>Electrical safety at scenes</td>
</tr>
<tr>
<td>16.2</td>
<td>Safe use of electrical equipment</td>
</tr>
<tr>
<td>16.3</td>
<td>Testing of Electrical Equipment</td>
</tr>
<tr>
<td>17</td>
<td>Working Alone</td>
</tr>
<tr>
<td>18</td>
<td>Managing Heat Stress</td>
</tr>
<tr>
<td>18.1</td>
<td>Recommended Safe Working Periods for Forensic Officers</td>
</tr>
<tr>
<td>19</td>
<td>Psychological Well Being</td>
</tr>
<tr>
<td>20</td>
<td>Reporting Policy</td>
</tr>
<tr>
<td>21</td>
<td>Health and Safety Audits</td>
</tr>
<tr>
<td>22</td>
<td>References, Guides and Forms</td>
</tr>
</tbody>
</table>

INTRODUCTION
The structure of the QPS health and safety program is outlined in the Health and Safety Hazard Management Policy 2012/16.
Staff from each forensic facility will be confronted with a unique set of health and safety risks due their work environment and the type of testing undertaken. As a result, it is not possible to standardise the control methods across the state. The purpose of these guidelines are to provide guidance to forensic personnel on how to appropriately control some of the common potential risks associated with forensic procedures. This document is not exhaustive and is not intended to limit the means by which an identified risk may be controlled. It also does not transfer responsibility for the identification and management of all health and safety matters from the regions or districts.

It is important that these guidelines be read in conjunction with other information available in the Worksafe website.

DEFINITIONS

High Risk Hazard A hazard that if realised, could result in serious injury or death.

1 MANAGING SAFETY STANDARDS

1.1 Responsibilities

1.1.1. QPS forensic officers work both in the laboratory and in the field. They may be required to perform duties in environments which are hazardous.

1.1.2. Managers / OIC’s and supervisors of forensic officers must take reasonable steps to ensure that staff use appropriate resources and processes to eliminate or minimise risks. Managers and OIC’s are to ensure that they comply with section 3 of the QPS Health and Safety Hazard Management Policy.

1.1.3 Managers / OIC’s are to ensure that an inspection of the workplace is conducted on a six monthly basis using PFS Admin 30 – Workplace Health and Safety Inspection Checklist. A scanned copy of the signed and completed form is to be saved in the FSG Returns Folder.

1.1.4. All forensic officers must take reasonable care for their own health and safety and ensure that their work does not adversely affect the health and safety of other persons. Forensic officers must comply with any reasonable instructions given, risk control measures and emergency procedures, and should carry out work in accordance with procedures or any relevant information and training provided to them.

1.1.5. In order to manage risk under the WHS Regulations, all forensic personnel must:

1. Identify reasonably foreseeable hazards that could give rise to the risk.
2. Eliminate the risk so far as is reasonably practicable.
3. If it is not reasonably practicable to eliminate the risk, minimise the risk so far as is reasonably practicable by implementing control measures.
4. Maintain the implemented control measure so that it remains effective.
5. Review and if necessary revise risk control measures so as to maintain, so far as is reasonably practicable, a work environment that is without risks to health and safety.

1.2 Preparation of Hazardous Scene Management Plan

1.2.1. Upon attendance at any crime scene, the first response forensic officer will conduct a hazard assessment. This should involve consultation with other attending emergency services, investigators, occupiers or operators. The officer must then conduct any examination in a manner that eliminates or adequately controls hazards that have been identified. Officers are not to enter a scene unless the risk has been eliminated or adequate controls have been put in place.

1.2.2. As a general rule, examinations of scenes that contain a high risk hazard (e.g. inhalable dusts including asbestos fibres, heights, enclosed spaces etc.) will not be undertaken for volume crime incidents.
1.2.3. Where a high risk hazard has been identified the forensic responder is to complete a PFS 11 - Crime Scene Hazard Assessment. The plan must be approved by a forensic officer of the rank of Sergeant or above prior to the commencement of the examination. Plans may be approved electronically on the Forensic Register. A copy of this document is to be attached to the officer’s Examination on the Forensic Register. For fires, PFS 96 - Fire Scene Hazard Assessment should be used.

1.2.4. In the case of a major incident involving a high risk hazard which requires a multi-discipline response, a PFS 70 – Major Incident Site Safety Plan should be completed by the FC or delegate, taking into account all of the activities to be undertaken by the various discipline experts. The examination should not proceed until this is process has been completed.

1.2.5. During the development of a hazardous scene management plan, advice should also be sought from the occupier/operator and relevant experts or authorities where appropriate. Such plans should take into account the content of these guidelines. The plan will detail:
 1. The location and nature of specific risks,
 2. How the risks will be eliminated,
 3. If elimination is not possible, how the risks will be controlled,
 4. Responsibilities of specific officers, and
 5. Requirements for specific hazards as outlined in the following sections of this document.

1.2.6. The Plan will be made available to all attending officers prior to entry into the scene.

1.2.7. A copy of this document should be attached to a relevant Case Management Case File Notation on the Forensic Register.

1.3 Specialist Teams

1.3.1 Confined Spaces Qualified

1.3.1.1 When entry to a recognised confined spaces is required to examine a crime scene, then consideration should be given to using “Confined Spaces Qualified” personnel who have received specialist training. See section 14.

1.3.2 Working at Heights Qualified

1.3.2.1 When the examination of a scene is required that involves working at heights, then consideration should be given to using “Working at Heights Qualified” personnel who have received specialist training. See Section 12.

1.3.3 Hazardous Environment Entry Team (HEET) Qualified

1.3.3.1 When the examination of a scene is required that involves entry into a Hazardous Environment, then consideration should be given to using “HEET” personnel who have received specialist training.

2 POTENTIAL HAZARDS

2.1 Hazards in the laboratory

2.1.1 Although the forensic laboratory is a controlled environment, the nature of forensic work involves a number of hazards. This includes:
 1. Biological hazards
 2. Chemical hazards
 3. Asbestos and other inhalable dusts
 4. Trip, slip or fall hazards
 5. Physical hazards (firearms, other weapons, sharps)
6. Exposure to UV light (Use of light sources and laboratory decontamination equipment)
7. Electrical hazards
8. Fire hazards (use of flammable reagents)
9. Manual handling

2.2 Hazards associated with forensic procedures
2.2.1 Some forensic procedures involve use of potentially harmful chemicals or exposure to other risks. Additional health and safety instructions for the various types of tests/examinations are outlined in the relevant procedures.

2.3 Hazards at scenes
2.3.1 Crime scenes can occur in any type of environment. As a result the risks may not be readily apparent and may be uncontrolled. Prior to entering a crime scene, first responding forensic officers must undertake a scan of the work area and identify potential risks. While not exhaustive, the following hazards may be encountered at scenes of crime.

1. Asbestos and other inhalable dusts
2. Biological
3. Chemical
4. Confined spaces
5. Electrical wiring (unsafe wiring practices, dangerously overloaded circuits)
6. Exposure to UV light (Use of light sources)
7. Fire hazards
8. Mantraps (live wiring, explosives, tripwires connected to loaded firearms)
9. Manual handling
10. Physical hazards (firearms, other weapons, sharps)
11. Radiological
12. Structural hazards (unsafe floors, walls and overheads)
13. Trip, slip or fall hazards
14. Unexploded devices
15. Heat Stress

2.3.2 Note: Do not assume that other emergency service workers already within the scene have identified all hazards or taken precautions.

3 POLICY FOR THE USE OF PROTECTIVE EQUIPMENT

3.1 General
3.1.1. The provision and maintenance of adequate personal protective equipment (PPE) is the responsibility of the Manager/OIC.

3.1.2. Managers and OIC's are responsible to ensure that their staff have been trained in the selection, fit, use, wearing, testing, storage and maintenance of any PPE. Officers should be aware that PPE, in particular safety masks, need to be fitted to the particular facial characteristics of the person. Training should be recorded on the Forensic Register.

3.1.3. The personal protective equipment required to be worn for each test/examination is outlined in the relevant procedure manuals and associated SDS. In addition, the following general precautions must be followed whilst working with hazardous materials or in hazardous environments.

3.2 Use of PPE when working with chemical hazardous substances
3.2.1. Safety glasses should be used when working with chemical hazardous materials. Safety glasses do not provide adequate protection when pouring hazardous chemicals;
3.2.2. Laboratory coats or protective overalls/coveralls should be used whilst working in the laboratory area. Enclosed shoes should be worn at all times whilst working in any laboratory.

3.2.3. Respiratory protective equipment is to be worn when hazardous chemicals are formed into an aerosol (e.g. spraying of a reagent).

3.2.4. Any other protective equipment listed in the Safety Data Sheet should also be used.

3.3 Use of PPE when working with biologically contaminated items

3.3.1 Disposable latex or nitrile gloves should be worn when handling biologically stained evidence, tissues or bodily fluid samples.

3.3.2 Enclosed shoes should be worn and the legs should be covered.

3.3.3 Face and eye protection (e.g. mask and safety goggles) and protective clothing (lab coat or coveralls) should be used when exposure may occur from the production of aerosols or from splashing bodily fluid. Examples of these situations are handling liquid blood, scraping or shaking contaminated evidence.

3.3.4 Gloves, laboratory coats and masks should be removed on leaving the evidence examination area.

3.3.5 Personnel should wash their hands and skin after de-gloving. Direct exposure to body fluids should be treated as per 2012/20 - Management of Blood/Body Fluid Policy.

3.4 Use of PPE when working in the field

3.4.0.1 Use all assigned personal protective equipment listed in the relevant procedure. See the Approved Forensic Suppliers for recommend suppliers and details. In general the following should be worn:

3.4.1 Protective Clothing

3.4.1.1 Field clothing – All forensic specialists are issued with clothing to be worn to crime scenes. Personal clothing should not be worn due to the potential for contamination.

3.4.1.2 Disposable protective clothing - Fluid-resistant gowns, coveralls, jump-suits, head covers and shoe covers are provided. These items should be worn at any scene where chemicals are used or are present and at any scene where potentially infectious materials are present.

3.4.1.3 When selecting protective clothing, temperature extremes should be considered. Some materials do not breathe and may cause increased body temperature and subsequent dehydration. See Section 18 on Heat Stress.

3.4.1.4 Protective clothing should cover the arms whenever lasers, alternate light sources or ultraviolet lamps are being used.

3.4.1.5 Steel soled shoes are to be used when there is the chance of sole punctures.

3.4.2 Gloves

3.4.2.1 Glove materials should be matched to the hazard being handled and the type of potential contamination.

3.4.2.2 Chemical resistant gloves made of butyl rubber; neoprene or nitrile should be worn when processing scenes with chemicals (ninhydrin, amido black, etc.).

3.4.2.3 Latex, nitrile or vinyl gloves can be worn when working with potentially infectious materials.

3.4.2.4 Gloves should be worn when working with alternate light sources, especially in the ultraviolet wavelength ranges. If using dye stains in combination with light sources, use chemical resistant gloves.
3.4.2.5 If a break or tear occurs in the glove(s), a new glove(s) should be donned immediately.

3.4.2.6 Also consider double gloving as a means of increasing the level of protection and to reduce cross contamination.

3.4.3 Eye Protection

3.4.3.1 Eye protection should be used where exposure to flying particles and fragments may be encountered (i.e. scraping dried blood, handling broken glass, sifting through fire debris, or in extremely windy conditions.)

3.4.3.2 Chemical splash goggles should be worn when applying chemicals at a scene.

3.4.3.3 Goggles or safety glasses with side shields should be used when working in situations where splashes, sprays, or droplets of potentially infectious materials may be generated.

3.4.3.4 Goggles equipped with appropriate barrier filters should be worn when working with lasers, alternate light sources or ultraviolet lamps.

3.4.4 Face Protection

3.4.4.1 Face shields (chemical splash shields) offer additional protection and can be worn in addition to goggles or safety glasses.

3.4.5 Respiratory Protection

3.4.5.1 Respirators may be necessary to protect personnel from airborne chemicals, asbestos and other fibres, and biohazards. For instance, chemicals may be a hazard at the scene of a clandestine laboratory. There may be airborne infectious material at the scene of a fatal explosion or fire. The use and selection of respirators is outlined in PFS 109 - Use of Respirator.

3.4.5.2 The use of a Microclip XT 4-Gas Detector may be of assistance in the atmospheres that require continuous monitoring. The instructions for use are contained in PFS 102 - Gas Detector.

3.4.6 Hard hats

3.4.6.1 To be used in scenes where there is the likelihood of falling debris. These hazards could occur at construction sites or arson scenes.

4 LABORATORY SAFETY PRECAUTIONS

4.1 Eating, smoking and cosmetic application

4.1.1 Smoking (including e-cigarettes) is strictly prohibited in all Crime Scenes, QPS Forensic Services facilities and vehicles.

4.1.2 No food or drink is to be prepared, stored or consumed in operational areas where examinations are performed, exhibits stored or chemicals prepared. Food or drink is not to be stored in any refrigerator used to store reagents or exhibits.

4.1.3 Cosmetics are not to be applied in any operational area of the forensic facility. Contact lenses are not to be inserted or removed in the laboratory or other hazardous work areas. Hands should always be thoroughly washed prior to handling the lenses.

4.2 Evacuation Plans and safety equipment signage

4.2.1 Each facility should have a fire detection system that is tested on a regular basis. There are to be emergency exits strategically located to enable the safe evacuation of buildings. Such exits are to be kept clear at all times.
4.2.2 Each facility should have a floor plan in a prominent position that shows the location of:

1. Emergency exits
2. Fire extinguishers/hoses
3. Fire alarm activators
4. Chemical stores
5. Chemical spill kits
6. Eyewash stations and safety showers
7. First aid kits
8. Distress alarms
9. Other safety equipment

4.2.3 Additionally, signs should be present to identify the safety equipment at each location.

4.3 Maintenance of safety equipment

4.3.1 First Aid Kits

4.3.1.1 First aid kits should be strategically located in each Forensic Services facility and vehicle. The contents and maintenance of these kits is outlined in Section 5 of 2012/19-First Aid and Infection Control Policy. The policy for first aid training and number of first aid trained personnel is outlined in this document as well.

4.3.1.2 PFS 56 - First Aid Inspection form is available to record checks of first aid equipment and should be conducted at the same time as the WPHS Station Inspection. Further information can be accessed in the First Aid in the Workplace Code of Practice 2014.

4.3.2 Eyewash Stations, Safety Showers and Drench Hoses

4.3.2.1 Eyewash stations and safety showers are placed in strategic locations within each facility that take no more than 10 seconds to reach. The performance and maintenance of this equipment is described in AS 4775 – 2007. Yearly tests of this equipment is performed by contractors organised by Property and Facilities. Yearly tests are recorded by means of a tag attached to the item by the contractor.

4.3.2.2 The purpose of a safety shower is to deliver high volumes of flushing fluid at significant fluid pressure. They are not suitable for use as an eyewash station.

4.3.2.3 A drench hose consists of a flexible hose connected to a flushing fluid supply and is used to provide fluid to irrigate and flush face and body areas.

4.3.2.3 The purpose of an eye wash station is to enable immediate flushing of the eye if it comes in contact with potentially harmful chemicals. Eyewash stations are in two forms:

1. Personal Eyewash Unit (squeeze bottle)
2. Hard plumbed or self-contained unit.

4.3.2.4 A personal eyewash unit is provided to supply immediate flushing before moving to an eyewash station that can supply at least 15-minutes of flushing water. Commercial preparations may be used in personal eyewash units provided they are within their expiry dates and should be checked monthly. If water is used in a personal eyewash unit, the water should be replaced weekly with fresh tap water.

4.3.2.5 The operation of hard plumbed eyewash stations and drench hoses should be checked on a monthly basis. Plastic end caps must be returned to the eyewash nozzles at the completion of the check.

4.3.2.6 The operation of safety showers is to be checked as part of PFS Admin 30 – (Workplace Health and Safety Inspection Checklist).

4.3.2.6 Any incident that requires the use of any of these devices must be recorded on the Incident/Injury Notification and Reporting System.
4.3.3 Distress Alarms (Duress alarms)

4.3.3.1 Distress alarms should be fitted in areas to enable personnel working alone to signal for attention if they get into trouble. These alarms consist of a button that triggers an auditable alarm when depressed. All facility staff should be aware of the location of each activator. Upon hearing the alarm, staff are to attend to the activation point to render any required assistance.

4.3.3.2 Where the facility is part of a police station, station staff should be made aware of the meaning of the alarm, the location of the activation point and how to gain access if the facility is locked.

4.3.3.3 The functioning of these alarms should be checked every six months as part of PFS Admin 30 – (Workplace Health and Safety Inspection Checklist). A drill similar to a fire drill should be conducted from time to time to ensure that personnel (including station staff where the facility is part of a police station) understand the meaning of the alarm and respond appropriately.

4.3.4 Fire Extinguishers

4.3.4.1 Fire extinguishers should be located in laboratories and all crime scene vehicles. Extinguishers should be inspected for serviceability by an authorised agent at least once every year. All extinguishers located in buildings will normally be checked as part of a facility maintenance program organised by Built Assets. OIC’s will need to ensure that other fire extinguishers such as those located in vehicles are checked yearly.

4.3.4.2 All forensic specialists should be trained in the use and handling of fire extinguishers and the suppression of fires using an extinguisher.

4.4 Visitor Inductions

4.4.1 The Work Health and Safety Act 2011 requires the induction of all contractors and visitors to a workplace. To meet this requirement, a supervisor nominated from the respective branch or section is to ensure that all visitors to the site are advised of any health and safety issues that may be encountered.

4.4.2 All visitors to a site will be required to sign the visitors register. Workers will need to be advised of any specific issues relating to working within that area.

4.4.3 Where work is to be conducted in a sensitive area, i.e. an examination area or exhibit room, consideration should be given to the continual supervision of that person. A record must be kept against the Equipment Register entry, of all contractors who enter a class one laboratory.

5 BIOLOGICAL HAZARDS

Bodily fluids are located at most crime scenes as a result of violence or injury. Items of evidence received at the laboratory are also highly likely to contain bodily fluids. Officers should assume that all biologically contaminated items or scenes are infectious and take necessary precautions. CBR scenes may present enhanced exposure to biological hazards. Scences of mass fatalities or DVI scenes may also require special care due to the quantity of biological hazards that may be encountered.

5.1 CBR incidents

5.1.1 Forensic officers are not to enter a declared hot zone of a CBR incident unless a PFS 85 - Major Incident Hazard Assessment and a PFS 70 – Major Incident Site Safety Plan have been completed.

5.1.2 Chapter 17.3.21 of the Operational Procedures Manual outlines how police must deal with scenes involving a suspected biological warfare agent. The management of the forensic response to these types of events is outlined in CSM 100.
5.2 Safe handling of biologically hazardous substances

5.2.1 All biological materials are to be regarded as potentially infectious.

5.2.2 Any materials and equipment that have possibly been in contact with human biological fluids or tissue, or used in the handling, processing or analysis of specimens are to be regarded as potentially contaminated.

5.2.3 All biological or potentially contaminated material is to be appropriately packaged and labelled to indicate its possible infectious nature.

5.2.4 All procedures are to be performed with due care, using appropriate control measures, so that contact with biological material or contaminated items, or inhalation of aerosols is avoided.

5.2.5 Contaminated paperwork is to be sealed in a plastic bag and then photocopied or scanned. The original contaminated paperwork should be discarded in the biohazard waste.

5.2.6 Upon completion of tasks, gloves are to be removed and disposed of in to the biological waste bin. Before leaving the work area, hands are to be thoroughly washed, in a sink dedicated for personal hygiene, using antiseptic hand cleanser and lathering for 30 – 60 seconds.

5.2.7 If exposure to potentially contaminated items occurs, the exposed body area is to be thoroughly washed using the same method as described above.

5.2.8 Any cuts or open wounds are to be adequately covered (with waterproof dressings) and kept dry.

5.2.9 Pens, pencils, fingers etc. are not to be put in or near the mouth or eyes, especially in areas where there is a risk of coming into contact with body fluids, or with biological or contaminated materials.

5.2.10 Work surfaces are to be cleaned and decontaminated at the completion of tasks, according to CSE 101.

5.2.11 Syringes and needles are to be used and handled with extreme care, and only if absolutely necessary. Syringe needles are not to be removed, bent, sheared, or replaced in a sheath unless the recapping/removal procedure can be carried out by a safe method with suitable equipment. Syringes and needles are to be placed in puncture-resistant containers for disposal.

5.2.12 All contaminated personal protective equipment is to be disposed of as contaminated biological waste.

5.2.13 Contaminated re-usable tools and service equipment, or other items, are to be autoclaved or chemically disinfected after use.

5.2.14 Equipment on which servicing or repair is to be carried out is to be cleaned and decontaminated by the “owner” of the equipment before being sent for service or repair.

5.3 Biological spills

5.3.1 If a biological spill occurs
1. Alert personnel in the vicinity that a spill has taken place.
2. Confine the spill by shutting doors and windows.
3. Evacuate the spill area (if necessary).
4. Personnel exposed to blood or other biological material are to be treated as per the Management of Blood/body Fluid Exposures and Skin Penetrations Policy.
5. While wearing protective clothing, gloves, face mask, and eye goggles soak up spill with cloth towels or other absorbing material.
6. Contaminated broken glass is not to be picked up with the hands. Tongs/forceps are to be used instead. Broken glass is to be placed in sharps bins for disposal.
7. Disinfect the spill area with 0.5% Sodium hypochlorite solution.
8. Dispose of cloth towels or other absorbing material used as biologically contaminated material.
9. Dispose of protective clothing, gloves and face mask as biologically contaminated material.

5.4 Treatment of exposures to blood bodily/fluids

5.4.1 All exposures to blood and other bodily fluids including puncture wounds are to be dealt with as outlined in the 2012/20 Management of Blood/Body Fluid Exposures and Skin Penetrations Policy. Immediate assistance and advice can be obtained by contacting the Blood and Body Fluid (BBF) Hotline on 1800010461 (24hr/7days)

5.5 Routine cleaning and disinfection procedures

5.5.1 Laboratory disinfection and decontamination procedures are outlined in CSE 101.

5.6 Immunisation Policy

5.6.1 The Service has a Hepatitis Inoculation Program for members and their families to minimize the risk of contracting hepatitis.

5.6.1 The Hepatitis B Inoculation Program

5.6.1.1 The Hepatitis B Inoculation Program is provided to:
1. all police officers;
2. staff members who are stationed in locations where there is a 'high risk' of contracting Hepatitis B; and
3. members' families who reside in communities where there is a 'high risk' of contracting Hepatitis B.

5.6.1.2 The program consists of an initial course of three inoculations over a six month period followed by a blood test six weeks after the last inoculation to determine immunity levels.

5.6.2 Hepatitis A Inoculation Program

5.6.2.1 The Hepatitis A inoculation program is provided to:
1. police officers and staff members who are required to work in locations or conditions where there is a 'high risk' of contracting Hepatitis A e.g. divers; and
2. member’s families who reside in communities where there is a high risk of contracting Hepatitis A.

5.6.2.2 The program consists of an initial course of two inoculations over a six month period. Follow-up blood testing is not performed as the test currently available is for the diagnosis of the wild virus. This test is not sensitive enough to detect the antibodies from vaccinations, and as efficacy is over 90%, is considered unnecessary. A booster inoculation is also administered every ten years.

5.6.2.3 For further Information contact the Hepatitis B Liaison Officer in the Personnel Section of your Region or your Regional Health and Safety Coordinator for information about these programs.

5.6.2.3 For further Information contact the Hepatitis B Liaison Officer in the Personnel Section of your Region or your Regional Health and Safety Coordinator for information about these programs.

6 CHEMICAL HAZARDS

Where unknown or unidentified material is suspected of being hazardous, consideration should be given to contact QFRS Scientific Unit or HAZMAT. Appropriate protective clothing shall be worn to limit possible hazards. Where the identity of a chemical being used, collected or analysed is known, the relevant MSDS should be consulted prior to using or coming into contact with that chemical. If hazardous, appropriate PPE shall be used and procedures followed. See External Service Providers for contact information.
6.1 CBR incidents

6.1.1 Forensic officers are not to enter a declared hot zone of a CBR incident unless a PFS 85 - Major Incident Hazard Assessment and a PFS 70 – Major Incident Site Safety Plan have been completed.

6.1.2 Chapter 17.3.18 of the Operational Procedures Manual outlines how police must deal with scenes involving a CBR Incident. The management of the forensic response to these types of events is outlined in CSM - 100.

6.2 Safe handling of chemicals/reagents

6.2.1. Minimise all chemical exposure. Avoid skin contact with chemicals.

6.2.2. Do not underestimate risk. Exposure should be minimised, even for substances of no known hazard. Special precautions should be taken when working with substances that present special hazards.

6.2.3. Utilise appropriate personal protective equipment and control measures as detailed in the Safety Data Sheets (SDS).

6.2.4. Avoid working in the laboratory alone. Do not work alone if the procedures being conducted are hazardous.

6.2.5. Do not intentionally smell or taste chemicals.

6.2.6. Wash hands before leaving the laboratory after handling chemicals or biological materials.

6.2.7. Containers of dangerous chemicals of capacity 25 L/25 kg or more must not be opened in a laboratory area. The operation must be carried out in a separate room or building (generally at least 3 m distant).

6.2.8. Be alert for signs of toxic chemical exposure to yourself and co-workers. Headache, nausea, dizziness, and skin irritation may indicate toxic chemical exposure. Leave area until the presence or absence of a hazard has been determined.

6.2.9. Use adequate ventilation. Use hoods when specified in the SDS or test procedure.

6.2.10. Use equipment only for its designed use.

6.2.11. Handle glassware and plastic ware with care. Do not use cracked or damaged glassware or plastic ware. Decontaminate damaged glassware if necessary before repairing or discarding. Dispose unusable glassware in designated containers.

6.2.12. Avoid any behaviour that might confuse, startle, or distract another worker.

6.2.13. Do not pipette by mouth.

6.2.14. Keep work areas clean and uncluttered. Chemicals and equipment should be properly labelled and stored. Clean up work areas on the completion of a test or at the end of each work day.

6.2.15. Report equipment malfunction to the person in charge of that piece of equipment and laboratory management. Such equipment must be taken out of service.

6.3 Safety Data Sheets (SDS)

6.3.1. It is the responsibility of the Officer in Charge of each facility to ensure that an SDS is readily available for all hazardous reagents or chemicals used.

6.3.2. The QPS subscribes to GoldFFX (formerly Chemwatch) to provide current SDSs for each chemical used.

6.3.3. Each facility should keep an up to date inventory of its chemicals reagents using the Manifest section of GoldFFX.

6.3.4. It is not a requirement of the code to keep hard copies of Safety Data Sheets; however OIC’s may decide to keep hard copies dependant on their particular needs.
circumstances. It is then up to the OIC to appropriately manage this resource. This WorkCover Qld web page outlines the requirements in relation to SDS’s.

6.4 Labelling of Reagents

6.4.1. Standards and Reagents must be labelled with:
1. Name of the standard/reagent;
2. Concentration, where appropriate;
3. Preparation date; and
4. Identity of preparer.

6.4.2 Where necessary, the following must also be included on labels:
1. Expiry date;
2. Storage conditions; and
3. Hazard warnings.

6.5 Storage of chemicals and reagents

6.5.1. The amount of chemicals stored in the laboratory should be kept to a minimum and the following points are to be adhered to:
1. The amount of chemicals stored in work areas should be kept to the minimum needed for day to day operations.
2. Avoid exposing chemicals to heat.
3. Chemicals should be stored only in designated areas (e.g. chemical storage room, flammable storage cabinet, corrosive storage cabinet). Appropriate hazardous signage should be present on the door of the storage area.
4. All but small quantities of flammable liquids should be stored in flammable storage cabinets. Doors to flammable cabinets should be kept closed. Smaller quantities of flammable liquids can be stored in fume cupboards provided that there are no ignition sources within the cupboard (e.g. Bunsen burners). Chemicals should not be stored in hoods if storage will restrict air flow.
5. Incompatible chemicals must be stored separately. For instance, acids and solvents must be stored separately (details of incompatible chemicals can be found on the SDS. GoldFFX electronic manifests automatically provide a warning prompt if incompatible chemical reagents have been included in the same inventory location). Also refer to the WorkCover Qld – Storage and Handling systems web page.

6.5.2. AS2243.10 – Safety in Laboratories: Storage of Chemicals, states the following quantities of chemicals are permitted to be stored in a laboratory, other than in a chemical storage cabinet (i.e. open bench storage). These limits should be followed as closely as possible and quantities in excess of these levels should be stored in a dedicated storage cabinet. Quantities stored in a dedicated store can be found in AS2243.10.

<table>
<thead>
<tr>
<th>DG Class</th>
<th>Class of Dangerous Goods</th>
<th>Maximum per 50m2 (kg or L)</th>
<th>Maximum pack size (kg or L)</th>
<th>Alternative storage options.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 3</td>
<td>10</td>
<td>5</td>
<td>AS 1940 or AS 3833</td>
</tr>
<tr>
<td></td>
<td>Combustible Liquids</td>
<td>50</td>
<td>20</td>
<td>AS 1940 or AS 3833</td>
</tr>
<tr>
<td>DG Class</td>
<td>Class of Dangerous Goods</td>
<td>Maximum per 50m² (kg or L)</td>
<td>Maximum pack size (kg or L)</td>
<td>Alternative storage options</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Classes 4.1, 4.2, 4.3, 5.1 or 5.2</td>
<td>20 but <10 of any one class</td>
<td>10</td>
<td>AS 2714 or AS 3833</td>
</tr>
<tr>
<td></td>
<td>See ADG/NZS 5433 for more information on storing toxic chemicals.</td>
<td>Class 6.1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Class 8</td>
<td>20 - Liquids 100 - Solids</td>
<td>20</td>
<td>AS 3780 or AS 3833</td>
</tr>
<tr>
<td></td>
<td>Class 9 and aerosols</td>
<td>50 – liquids 100 - solids</td>
<td>5 – liquids 20 – solids</td>
<td>AS 4681 or AS 3833</td>
</tr>
<tr>
<td></td>
<td>Maximum aggregate quantity</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.5.3. Store two incompatible goods at least 3m apart. Where the goods could react violently, store them at least 5m apart. When not in use, chemicals should be stored in designated cabinets or labelled locations.

6.5.4. Flammable materials should not be stored in refrigerators or freezers unless the appliance is designed to be explosion proof.

6.5.5. Chemicals stored in work areas that are no longer needed should be returned to the stockroom or disposed of in an appropriate manner.

6.5.6. Chemicals should be transported from chemical storage areas to work areas using suitable bottle carriers.

6.5.7. Gas cylinders, including empty ones, are to be stored in a separate area. All cylinders are to be stored vertically and secured. Valves and fittings are to be protected from accidental damage.

6.6 Chemical spills

6.6.1 When a spill occurs
1. Attempt to determine the nature of the spill before entering the area. If necessary, a respirator should be used prior to entering the area (see PFS 109 - Use of Respirator procedure).

2. Consult the MSDS to determine the risks associated with the chemical and appropriate first aid response. If necessary, notify the Fire Service and Ambulance Service. Notify supervisor of the spill.

3. Attend to any persons who may have been exposed and provide necessary first aid. This may include placing them under a safety shower where the chemical has come in contact with the skin. Eyewash stations should be used when eye contamination occurs.

4. Notify all persons in the immediate area of the spill and evacuate non-essential personnel from the spill area.

5. Where the chemical is volatile or flammable, turn off any ignition or heat sources in the area (if safe to do so) and provide maximum ventilation without allowing the vapours to spread to other occupied areas.

6. The officer in charge will determine if the spill can be safely handled by personnel in the laboratory. If the spill can be safely handled by laboratory staff, it will be cleaned up following the procedure outlined in the PFS and accounting any special requirement outlined in the MSDS. If the spill cannot be handled by laboratory staff, assistance should be obtained from the Fire Service HAZMAT team and the situation should be treated in accordance with OPM 17.3.13.

6.6.2 Clean up procedures

1. This procedure should only take place after an assessment has been made by the officer in charge, in consultation with any relevant authority, that the spill can safely be dealt with by laboratory staff.

2. Chemical spills are to be dealt with using the spill kit located in each facility. These spill kits contain an absorbent material capable of containing or absorbing a wide range of liquid materials. However, it cannot be assumed that equipment in the spill kit is suitable for the liquid spilled, and its suitability should be verified by reference to the information supplied in the kit or in the MSDS.

3. Always wear the appropriate personnel protective equipment as outlined in the relevant MSDS.

4. Use the absorbent material to contain the spill and stop it spreading to other areas or reaching drains etc. The absorbent is applied to the spill in order to soak it up.

5. The absorbent material exposed to the liquid should be placed in a container. A non-spark tool should be used to collect loose granular absorbents (e.g. plastic dustpan). The container should be labelled with the name of chemical spilled and any relevant hazard warnings. If the chemical is a solvent, the contaminated absorbent should only be placed temporarily in a plastic container and will require transfer to a metal container.

6. The contaminated absorbent is then disposed of according to the procedure outlined in the MSDS.

7. The spill kits are to be used once only and must be disposed of and replaced after use. Reuse may result in serious injury if the chemicals involved are incompatible.

6.7 First aid response for chemical exposure

6.7.1 If chemical splash to the body occurs

1. Irrigate the splashed surface with copious running water for at least 15 minutes, or until satisfied that no chemical remains in contact with the skin. Use the emergency shower where appropriate. Use soap to assist with the removal of agents insoluble to water

2. Remove all contaminated clothing. Do not remove clothing over the head.

3. Seek medical attention immediately.

6.7.2 If chemical splash to the eye occurs
1. Irrigate the eye using eyewash station equipment. Such irrigation should continue for at least 15 minutes ensuring that the area under the lid is irrigated thoroughly.
2. Seek medical attention immediately.

6.7.3 When overcome by fumes
1. Check for immediate dangers to the victim or rescuer. A respirator or other face shield should be used if available.
2. Remove the victim from the obvious hazard to a well ventilated area.
3. Stay with the victim and call for help.
4. Send bystanders for help.
5. Check victim for unconsciousness using "shake and shout" method.
6. Treat the unconsciousness first. Check airway, breathing and circulation.
7. Begin appropriate resuscitation if necessary

6.8 Lead contamination
6.8.1. The principle of lead minimisation is to be applied to all work surfaces within the ballistics laboratory, as well as the principle of lead monitoring within ballistics officer’s blood to ensure that any unsafe practices are identified and an early intervention is possible in cases of high levels being detected.
6.8.2. The Officer in Charge, Ballistics Unit is to ensure that all staff working at the unit has their blood lead levels tested at 12 month intervals (or as stipulated by Work Health and Safety Regulation 2011 part 7.2). A record of the lead levels of each member of the unit is to be kept in the officer’s records held in hard copy at the Ballistics Unit. A copy of this level is also to be forwarded to the Occupational Health and Safety Coordinator, Operations Support Command.
6.8.3. The OIC, Ballistics Unit is to also ensure that officers within the unit are observing best practice with regard to cleanliness of both personal benches and communal areas.

7 WASTE DISPOSAL
7.1 Chemical waste
7.1.1. Waste disposal should be in accordance with federal, state, and local regulations. Refer to the relevant SDS for the most appropriate disposal method.
7.1.2. Disposal of laboratory waste by pouring down the drain should only be conducted when federal, state, and local regulations permit such disposal.
7.1.3 Only water-soluble substances should be poured down the laboratory sink. Flammable solvents should be diluted enough not to be a fire hazard.
7.1.4 Strong acids and bases (pH <2 or >12.5) must be diluted to a pH range of 3 - 11 before being disposed of down the drain at a rate of 50ml/min.
7.1.5 Highly toxic, malodorous (bad smelling), or lachrymatory (tear producing) chemicals (for example, sodium cyanide, pyridine, thionyl chloride) should not be disposed of down the drain.
7.1.6 Solid chemical waste should be collected and stored in its original container. If the original container is not available, a container suitable for storing hazardous waste may be used. Contents and amount should be listed on the container. Hazardous waste containers should be labelled "Hazardous Waste" and bear the appropriate hazardous materials label.
7.1.7 Liquid chemical waste should be collected and stored in its original container. If the original container is not available, a container suitable for storing hazardous liquid waste may be used. Waste solvents that are free of solids, corrosive or reactive liquids may be stored in a common container. All contents and amounts should be listed on
the container. Hazardous waste containers should be labelled "Hazardous Waste" and bear the appropriate hazardous warning label. Chlorinated solvents and hydrocarbon solvents should be segregated.

7.1.8 Hazardous waste containers should be segregated from incompatible chemicals (for example, acids from bases, azides from acids, acids from solvents.)

7.1.9 The officer in charge of the facility is to make arrangements for the disposal of hazardous waste that cannot be disposed of down the drain. See the local procedures for each Section.

7.2 Biological waste and sharps

The procedures for disposing of wastes including biological and sharps are outlined in the 2012/19 - First Aid and Infection Control Policy.

7.3 Uncontaminated waste

Uncontaminated waste is disposed of in a manner appropriate to the nature of the waste. Where recycling is possible, appropriate items are to be placed in recycling bins provided at each establishment. Paper is to be placed in paper recycling bins. Where documents are of a sensitive nature, they should be shredded and disposed of in security bins.

Contents Page

8 ASBESTOS HAZARDS (AND OTHER DUSTS)

8.0.1 Exposure to asbestos fibres (and other inhalable dusts) presents a significant health risk to forensic officers. Inhalation of the asbestos fibres causes a number of possibly fatal diseases including mesothelioma, asbestosis and lung cancers with a latency period of up to 40 years. Asbestos and ACM (asbestos containing materials) only become dangerous when the medium that it is contained within is disrupted releasing the fibres. This may include scenes where there has been significant damage to the structure including fire scenes (fire scenes are of particular significance because the combustion process may free the individual fibres). If the asbestos or ACM has deteriorated, has been disturbed, or if asbestos-contaminated dust is present, the likelihood that airborne asbestos will be released into the air is increased.

8.0.2 Buildings constructed before 1990 are likely to contain asbestos materials. In addition items of plant and equipment constructed and installed prior to the 31st of December 2003 may also incorporate ACM. Examples of such include components of lift motors, generators, air conditioning plant, gate valves, boilers, rope seals, gaskets, and sealants.

8.0.3 Common ACM found in domestic and commercial buildings building fabrics include either flat or corrugated sheeting in walls, ceilings or roofing. Common names of these products are: Super Six, Hardiplank, Versilux, Hardiflex, Fibro, Tilux, Shadowline and Coverline wall sheeting, Zelimite in switchboards, roof shingles. These ACM products may also be found in floor tiles or sheet underlay, sheet vinyl, and textured paints. Also some of these products where used in fencing materials, and in pipe work.

8.0.4 The information contained in this procedure is not exhaustive and further information on how to deal with scenes containing asbestos is outlined in the Code of Practice on How to Manage and Control Asbestos in the Workplace and How to Safely Remove Asbestos. Information is also available from the WorkCover Qld website.

8.1 Risk management during a fire involving an ACM structure

8.1.1 When exposed to fire and high temperatures, the ACM products may suddenly crack and break causing the product to degrade as a result of loss of moisture from the high temperature, such that it ‘explodes’ (spalls) into smaller pieces. Spalling of asbestos cement products is the major cause of the release of fibres but typically spalling only occurs in the early stages of the fire. During the actual fire asbestos fibres, may be released into the fire plume and therefore avoidance of the plume is prudent. See the
8.2 Identification of asbestos or ACM

8.2.1. The first response forensic officer must make an assessment as to the presence, or absence of asbestos and if present, the potential of exposure to airborne fibres due to disruption of the material. Asbestos is assumed to be present unless:

1. The building, ship or plant was constructed after 1990 and there is no plant or equipment made before 2004; or
2. For a building built before 1990, it is constructed wholly of metal, brick or concrete (including the roof); or
3. A register indicates that all the identified and assumed asbestos has been removed.

8.2.2. In determining if asbestos is present or not, the officer must consider:

1. Information from the building owner or occupant as to the materials used in the structure;
2. In the case of fires, information from attending fire officers;
3. Assessing the age of the structure and identifying the construction materials used. This may be carried out by inspecting areas that are undamaged or viewing construction plans. The officers must consider floor tiles, pipes, insulation, fuse boxes, and under eaves lining; and
4. For a place of business, inspecting the Asbestos Register.

8.2.3. Officers must assume that asbestos or ACM is present if they cannot determine the age of the structure or the type of materials used.

8.3 Preparation of management plan to address asbestos risk

8.3.1. A PFS 11 - Crime Scene Hazard Assessment or PFS 96 - Fire Scene Hazard Assessment will be prepared and will identify:

1. The location and nature of assumed asbestos materials.
2. Areas where officers are permitted to enter.
3. Areas where officers are not permitted to enter.
4. The activities that the officers are permitted to undertake taking into account:
5. The proximity of neighbouring houses.
6. The seriousness of the investigation.
7. The condition, location and quantity of assumed or known asbestos sources.
8. Measures to be taken to prevent formation or release of dusts (e.g. wetting of scene, sealing areas, asbestos removal etc.). Further information on appropriate measures are outlined in the Code of Practice on How to manage and control Asbestos in the Workplace.
9. The level of PPE.
10. A designated decontamination site and means of decontamination.

8.3.2 As a general rule, disturbance or overhaul is to be avoided in areas known or suspected of containing asbestos or ACM.

8.3.3 Forensic Officers are not permitted to enter the contaminated area or undertake the proposed demolition work until the one of the forms mentioned in 8.3.1 has been completed. Forensic officers must abide by the plan.

8.3.4 A copy of this document should be attached to a relevant Examination Summary on the Forensic Register.

8.4 PPE to prevent exposure to Asbestos

8.4.1. Where exposure to asbestos is identified as a risk, officers must wear the appropriate PPE as follows:

1. P2 gas vapour respirator.
2. Goggles if the respirator is not a full face variety.
3. Disposable asbestos impervious coveralls with fitted hood and cuffs.
5. Disposable nitrile gloves covered by leather riggers gloves.

8.4.2. Officers must have received appropriate training in how to fit and use PPE before being permitted to enter the scene.

8.4.3. Do not enter a scene that is hot, smouldering or containing embers. Where there is smoke, there is fire. Beware that the fibre suit required to be worn to protect from asbestos exposure will melt and adhere to the skin causing burns at relatively low temperature.

8.4.4 NOTE: The coveralls used for crime scene examination are not asbestos impervious. Each facility should ensure it has a supply of appropriate asbestos impervious coveralls.

8.5 Decontamination and waste management protocols

8.5.1 On completion of the examination, personal decontamination is achieved by setting up a decontamination area or facility within the exclusion zone. This area should be equipped with a plastic drop sheet, waste bags, wet wipes or rags, a water bucket, atomizer bottle with water in it in readiness for the officers use prior to leaving the site.

1. All exhibits taken from a scene suspected of containing asbestos must be marked to indicate that the contents may contain asbestos. The outside of any bags or tins must be wet wiped down as part of the decontamination procedure.
2. Keep the respirator on until all visible asbestos dust/residue is removed from protective clothing by wet wiping.
3. While still wearing the respirator, take off the disposable coveralls and gloves (both the leather and nitrile), place in an asbestos waste bag and dispose of as asbestos waste.
4. Footwear should also be wet wiped.
5. Remove the respirator and thoroughly clean. The filter is to be disposed of with other asbestos waste.
6. The head, face and hands should then be thoroughly cleaned paying particular attention to the fingernails.
7. Single use PPE used in asbestos related work is to be removed from the work area for disposal. It must be sealed within a container, which is decontaminated and labelled to indicate the presence of the asbestos in accordance with the WHS Regulations and disposed of at a licensed waste facility as soon as reasonably practicable.
8. All tools and equipment (including respirators) should be wiped down using damp rags. Rags are used once and then disposed of as asbestos waste. If a bucket is used to wet the rags, they should not be re-dipped in a bucket. Care should be taken to avoid any electrical hazard when using this procedure.
9. Asbestos waste and exhibits containing asbestos are to be double bagged. The internal bag must be a heavy gauge plastic bag at least 200µm in thickness and sealed in a manner that will prevent the escape of fibres. This internal bag is to be sealed inside a second plastic bag. The packaging needs to be labelled ‘Caution Asbestos – Do not open or damage bag. Do not inhale dust’.
10. Hard or sharp waste must be packaged in a manner to prevent bag rupture (e.g. wrapped in cloth).
11. Asbestos contaminated material may be disposed of through an appropriate waste disposal contractor. Appropriate contractors can be located by searching the Yellow Pages for “Asbestos removal”. How to Safely Remove Asbestos Code of Practice 2011 provides further information of disposing of asbestos. Alternatively, appropriately labelled, sealed and wrapped contaminated material may be left in a conspicuous location inside the scene, i.e. near the entry, thus alerting any future persons entering the scene that asbestos may be present.

8.5.2 NOTE: The currently available heat seal lay-flat plastic tubing available from Logistics is 150µm in thickness and as such, not suitable for disposing of asbestos waste.
9 RADIOTHERMAL HAZARDS

9.1.1 Radiothermogenic hazards may be encountered during routine casework involving, for example, aircraft or medical couriers.

9.1.2 Forensic officers are not to enter a declared hot zone of a CBR incident unless a PFS 85 - Major Incident - Hazard Assessment and a PFS 70 – Major Incident Site Safety Plan have been completed.

9.1.3 Chapter 17.3.21 of the Operational Procedures Manual outlines how police must deal with scenes involving a suspected biological warfare agent. The management of the forensic response to these types of events is outlined in CSM - 100.

10 EXPLOSIVE HAZARDS

The FC must be contacted for all post blast incidents or where a suspected explosive (including precursor chemicals) or explosive device is located. Secondary explosive devices should always be suspected. A PFS 85 - Major Incident Hazard Assessment and a PFS 70 – Major Incident Site Safety Plan will be developed in consultation with EORT. A copy of this document should be attached to a relevant Examination Summary on the Forensic Register. Advice from structural engineers must be included in the plan where significant damage has been caused to a building as a result of an explosion. See ESE100 - Pre and Post Blast Examinations for more information.

11 PHYSICAL HAZARDS

Officers may be exposed to physical hazards within crime scenes and the laboratory. Common hazards include sharps, weapons and firearms. Other physical hazards including those associated with structures are outlined in further sections of these guidelines.

11.1 Handling sharps

11.1.1 Use a single motion from the site of origin to the collection receptacle. Do not cross your arms or hands while moving sharps.

11.1.2 Syringes pose a significant infectious disease threat. Collection of syringes should be avoided wherever possible. Officers should never try to replace caps over needles. Syringes should be placed in a purpose made sharps container if collection is deemed necessary. Further information for dealing with sharps and syringes is detailed in the 2012/19 - First Aid and Infection Control Policy.

11.1.3 Other sharps such as edged weapons are often encountered at crime scenes. These also present a significant infectious disease risk. Such items must be packaged in a purpose made box or capped cardboard tube. Broken glass must be wrapped in a manner that prevents protrusion of edges. The packaging must be labelled with appropriate warnings.

11.1.4 Disposal of sharps is covered in local procedures for each establishment. Further information is also detailed in Section 8.8 of 2012/19 - First Aid and Infection Control Policy.

11.2 Use of vehicle hoists

11.2.1 Officers are not permitted to utilise vehicle hoists unless they have received appropriate training from a competent person. Such training must have been recorded on the Forensic Register. Before each use, officers are to perform a visual
inspection and functional test to ensure that the hoist is operating correctly and should include:

1. operating controls and emergency and safety devices,
2. a visual check of the structure,
3. air and hydraulic system leaks,
4. loose and missing parts,
5. placards, decals, warnings, control markings and operating manuals,
6. access and clearance provisions,
7. guards are correctly fitted.

11.2.2 This inspection may be recorded in the officer’s notes.

11.2.2. A documented inspection is to be conducted within three months of a hoist being used. This service should be organised by the OIC unless the yearly service will fall within 3 months. More information can be found in AS/NZS 2550.9:1996 Cranes – Safe Use Part 9: Vehicle Hoists.

11.2.3 Inspections and maintenance are to be performed yearly and a major inspection is to be performed every 10 years. This inspection is usually organised by the Asset Services.

11.2.4 Records of inspections, use and repairs must be stored against the Equipment Record for the Hoist on the Forensic Register. Records of the use of hoists can be automatically kept by entering the Hoist’s equipment number into the Instrument Id field of the Examination summary.

11.3 Handling of firearms

11.3.1. All firearms must be assumed loaded until inspection proves otherwise.

11.3.2. Firearms are NOT to be pointed at another person.

11.3.3. The statement by another individual that a firearm is "unloaded" is not acceptable and each officer handling a firearm is to confirm that it is unloaded or has been rendered safe.

11.3.4. Officers are not permitted to handle, examine move or transport a firearm until it has been rendered safe.

11.3.5. Officers are not permitted to render safe a firearm unless they have received appropriate instruction on how to render the specific class of firearm safe. The Ballistics Unit provides render safe advice on a 24hr basis which is accessible through the FC.

11.3.6. When rendering a firearm safe, officers must:
 1. Perform the operation in a designated area.
 2. Point the firearm in a safe direction.
 3. Keep fingers well away from the trigger

11.3.7. Appropriate precautions should be taken to recover or protect relevant latent prints, trace or surface deposit evidence when performing safety inspections.

11.3.8. To ensure that evidence will not be lost, notes should be made describing either the unloading or rendering safe procedure (e.g., number of rounds, position of the cylinder, position of the hammer, etc.).

11.3.9 Any problems or doubts concerning the safe handling of a firearm should be brought to the attention of an experienced firearms examiner or a supervisor.

11.3.10 Any unexpected safety occurrence should be immediately reported to a supervisor.

11.3.11 Further information regarding the safe handling of firearms including render safe procedures is outlined in the FTE 114 - Firearms Safety Manual.

11.3.12 New operational staff are to complete the Weapons Safe Handling Tutorial available on the Forensic Register Training page.
11.4 Hazardous Manual Tasks

11.4.1 Hazardous manual tasks include lifting, lowering, pushing, pulling, carrying or otherwise moving anything which requires:

1. High, sudden or sustained force
2. Repetitive movement
3. Sustained or awkward posture
4. Exposure to vibration.

11.4.2 The following guidelines are designed to prevent injury as a result of undertaking manual tasks:

1. Avoid bending or twisting the back. Laboratory benches must be of a suitable height and have adequate knee and foot clearance. Working height should be at about elbow height, higher for precision work, and lower when force is needed. All materials, tools, controls and maintenance items should be located in front of the worker and between waist and shoulder height.
2. When undertaking examinations in the field, select suitable surfaces to undertake the activity as per above.
3. Avoid repeated or sustained bending of the neck. Work stations should be designed to present work items front on to the worker.
4. Reduce need for kneeling and utilise a cushioned surface if kneeling for prolonged periods is necessary in the field. Avoid squatting by having only necessary work done at low levels.
5. Try to make loads as light or small as possible by repackaging (e.g. putting in smaller containers, or specifying smaller or more manageable loads when purchasing). This includes kits used by forensic officers. Manual lifting or carrying heavy loads should only be done as a last resort. Use mechanical aids that suit the load and the work being done, and are as light and easy to use as possible. Convert from carrying to pushing, pulling, sliding or rolling suitable loads. Officers should use suitable trolleys to transport equipment and other items. Never bend over or twist the body to lift a load.

11.4.3 Officers should be provided adequate rest breaks to enable them to walk around or stretch.

11.4.4 More information can be found in the Hazardous Manual Tasks Code of Practice.

12 TRIP AND FALL HAZARDS INCLUDING WORKING AT HEIGHTS

12.1 Identification of trip or fall hazards

12.1.1 Prior to any examination, officers must identify the presence of fall or trip hazards. This includes access areas to the areas where work is to be carried out. The risk assessment must take into account the type of task that is to be undertaken. Officers must assess:

1. Where levels change and workers may be exposed to a fall from one level to another.
2. Stability, fragility or brittleness of work surfaces (e.g. Fire damaged floors, rusty metal roofs, fibreglass sheeting, skylights)
3. Slope of work surfaces especially where they exceed 7 degrees.
4. Stability of temporary or permanent structures and their capacity to support loads.
5. The presence of holes, openings or excavations.
6. Potential to slip (e.g. where surfaces are wet, polished or glazed)
7. Distance of work areas from an unprotected edge, hole or change in level.
10. Weather conditions—the presence of rain, wind, extreme heat or cold can cause slippery or unstable conditions.
11. The suitability of footwear and clothing for the conditions.

12.2 Managing slip and trip hazards
When a trip hazard is identified within a work area, officers should take steps to control the risk. Elimination of a risk is preferred (e.g. Removing items officers may trip over). If removal is not possible the hazard should be marked with some form of highly visible warning.

12.3 Managing hazards associated with holes, shafts, and other penetrations
Holes, penetrations and openings through which a person could fall must be made safe immediately after being formed or identified. This may be achieved by placing a barrier around the area or covering the area over. Should a cover be used as a control measure, it must be made of a material that is strong enough to prevent persons or objects falling though and must be securely fixed to prevent any dislodgement or accidental removal.

12.4 Managing hazards associated with working at heights
12.4.1. Officers planning to work at an elevated height must first assess the risk of a fall occurring including:
 1. The distance of a potential fall.
 2. The proximity to an unprotected edge.
 3. Whether the work will be conducted with the worker’s back to the exposed edge.
 4. The evenness, slipperiness and slope of the work platform.
 5. The type of surface that may be fallen onto including the presence of jagged or hard items such as rocks, bricks etc.

12.4.2 The evenness and stability of the ground for safe support of ladders, scaffolding or a work platform.

12.4.3. The Hazardous Scene Management plan will take into consideration the circumstances of each case but will primarily aim at preventing a fall by use of an edge barrier or protected work platform (scaffolding, cherry picker). The erection of such a barrier must be performed by a competent person and be of a nature so as to resist a person falling against it. Where erection of an edge barrier or protected platform is not practical, assistance can be sought from QFRS in relation to alternative work methods that may include fall prevention or arrest systems. Officers are not to utilise harnesses unless they have received appropriate training.

12.4.4. Forensic officers must comply with any additional safety requirements of the QFRS where they are in control of the work area.

12.4.5. At routine crime scenes, forensic personnel are not to operate at heights where there is a reasonable risk of falling.

12.4.6. When working at heights measures must be taken to prevent the risk of items falling on personnel below.

12.5 Safe Use of Ladders
12.5.1 All ladders used must comply with AS/NZS 1892.1, AS 1892.2, AS/NZS 1892.3 and/or AS/NZS 1892.5 as appropriate (see s.22)

12.5.2 Ladders should generally only be used as a means of access to or egress from a work area. They should only be used as a working platform for light work of short duration that can be carried out safely on the ladder.

12.5.3 Check the suitability and condition of ladders prior to each use, including where and how they are being used. Each ladder must be thoroughly inspected every six months and this must be recorded as part of the biannual workplace inspection and recorded in PFS Admin 30 – Workplace Health and Safety Inspection Checklist.
12.5.4 Any ladder used must be set up on a solid, stable and even surface, and set up so as to prevent the ladder from slipping as per adjacent picture.

12.5.5 Never use a stepladder near the edge of an open floor, penetration or any raling.

12.5.6 Never over-reach (the centre of the torso should be within the ladder stiles throughout the work).

12.5.7 Never use any equipment on a ladder requiring two hands to operate.

12.5.8 Never face away from the ladder when going up or down, or when working from it.

12.5.9 Never stand on a rung closer than 900 mm to the top of a single or extension ladder.

12.5.10 Never stand higher than the second tread below the top plate of any stepladder (with the exception of three-rung step ladders).

12.5.11 Never use or carry a ladder around or under powerlines.

12.6 Managing structural hazards

12.6.1 Where there exists any doubt as to the structural integrity of a building or other structure, advice must be obtained from a suitably qualified engineer prior to entry. Such advice should include how the structure may be rendered safe. Personnel must not enter areas deemed unsafe.

13 WORKING IN MINES

13.1 Officers must comply with the provisions of s8.5.5 of the Operational Procedures Manual. Prior to entry officers must consult with the Inspector of Mines to identify potential risks and develop a safety plan. This plan should include the elements outlined below in relation to working in confined spaces.

14 WORKING IN CONFINED SPACES

14.0.1 Confined spaces are commonly found in vats, tanks, pits, pipes, ducts, flues, chimneys, silos, containers, pressure vessels, underground sewers, wet or dry wells, shafts, trenches, tunnels or other similar enclosed or partially enclosed structures. Confined spaces pose dangers because they are usually not designed to be areas where people work. Confined spaces often have poor ventilation which allows hazardous atmospheres to quickly develop, especially if the space is small. The hazards are not always obvious and may change from one entry into the confined space to the next. More information is available in the WorkCover Qld Confined Spaces Guide.

14.1 Risks of working in confined spaces

14.1.1 Working in confined spaces carries significant risks including:
Health and Safety Guidelines
Police Forensic Services

1. loss of consciousness, impairment, injury or death due to the immediate effects of airborne contaminants
2. fire or explosion from the ignition of flammable contaminants
3. difficulty rescuing and treating an injured or unconscious person
4. asphyxiation resulting from oxygen deficiency or immersion in a free-flowing material, such as liquids, grain, sand, fertiliser or water.

14.2 Identification of confined space hazard

14.2.1 The first response forensic officer shall make an assessment as to the nature of the working environment and determine if it is a confined space. An enclosed or partially enclosed area is considered to be a confined space if:
1. it is not designed or intended primarily as a workplace; and
2. could have restricted entry or exit; and
3. is likely to be a risk to health and safety from:
 a. harmful concentrations of any airborne contaminants, including airborne gases, vapours and dusts, that may cause injury from fire or explosion, or
 b. an atmosphere that does not have a safe oxygen level, or
 c. anything that could cause engulfment.

14.2.1 Entry into confined spaces

14.2.1.1 Forensic officers are not to enter confined spaces unless:
1. A PFS 11 - Crime Scene Hazard Assessment has been developed as per 14.4; and
2. A PFS 12- Confined Space Entry Permit has been issued by the FC.

14.3 Development of Hazardous Scene Examination Plans for confined spaces

14.3.1. Entry into a confined space should be avoided wherever possible. A risk assessment is to be undertaken by the FC to determine the necessity to enter the confined space and the risks involved. The FC should seek advice from competent persons during the risk assessment and control development (this may include consulting with the plant operator and QFRS staff). The FC must consider:
1. the likelihood of evidence being located in the confined space.
2. the atmosphere in the confined space, including whether testing or monitoring is to be undertaken
3. The nature of the examinations to be conducted in the confined space including the risk of spark development and the production of toxic/c Combustible/explosive fumes.
4. the risk of engulfment of a person
5. the number of persons occupying the space
6. the temperature of the space so that it will not cause heat stress
7. the soundness and security of the overall structure and the need for lighting and visibility
8. the identity and nature of the substances last contained in the confined space
9. any risk control measures needed to bring the confined space to atmospheric pressure
10. the number of persons required outside the space:
11. the means of communication with the persons within the confined space.
12. risks associated with other hazards, such as noise or electricity
13. the physiological and psychological demands of the task and the competency of persons involved in the tasks or emergency response duties
14. the adequate instruction of persons in any required procedure, particularly those that are unusual or non-typical, including the use and limitations of any PPE and other equipment to be used
15. the availability and adequacy of appropriate PPE and emergency equipment for all persons likely to enter the confined space.
16. prohibiting spark-generating equipment, clothing and footwear
17. whether purging or cleaning in the confined space is necessary
18. the conditions that could impede entry and exit or the conduct of the tasks in the confined space, for example, plant layout, dimensions, manual handling and ergonomic aspects of the task activity.

19. whether the number, size and location of entrances and exits are adequate to enable the rapid exit and rescue of workers from the space.

14.3.2. If entering a confined space cannot be avoided, then a safe system for working inside the space must be documented by the FC in the Hazardous Scene Management Plan. The following matters must be included in the plan:

1. Specification of the confined space.
2. The names of persons permitted to enter the confined space, the number permitted to enter at any one time and the period of time that they are permitted to remain in the space.
3. How atmospheric conditions will be monitored if deemed necessary.
4. How a safe level of oxygen will be maintained including where necessary the means by which the space will be ventilated to maintain air quality and reduce heat stress.
5. The presence or absence of atmospheric contaminants within the space including the presence of toxic/flammable/explosive material. Officers are not permitted to enter flammable of explosive atmospheres due to the inherent risk of spark production associated with forensic procedures. The area should be ventilated and monitored to ensure the risk is removed prior to entry. Atmospheric monitoring should continue to ensure conditions remain safe.
6. The level of PPE required. Where the atmospheric conditions cannot be maintained at a safe level, appropriate respiratory protective equipment must be provided.
7. The presence of any other risk and appropriate control measure.
8. How officers are to enter and exit the space.
9. Identification of any area that the officers are not permitted to enter within the specified confined space.
10. How continuous communication will be achieved between outside supervisors and inside examiners.
11. Details pertaining to the nature of the tasks officers are permitted to perform.
12. Evacuation and rescue procedures should an emergency occur.
13. If available, a MicroClip XT 4-Gas Detector should be used to monitor the levels of Hydrogen Sulphide, Carbon Monoxide, Oxygen and combustibles. Instructions for use are contained in PFS 102 – Gas Detector.

14.3.3 The FC must maintain a log detailing the names and times that personnel entered and exited. The FC must reconcile the log to ensure that all officers safely exited the scene.

14.3.4 The above information is not exhaustive. Further information can be accessed in the Work Health and Safety Regulation 2011 Part 4.3 or from the WorkCover Qld Web site.

Contents Page

15 ULTRAVIOLET LIGHT

15.1 Ultraviolet (UV) light causes skin cancers which are potentially fatal. Officers may be exposed to UV light as a result of exposure to:

1. the sun
2. forensic light sources
3. laboratory UV decontamination lights

15.1.1 While working outdoors in day light hours, officers must prevent sun exposure by:

1. wearing issued hat,
2. seeking shade,
3. wearing approved uniform clothing,
4. wearing issued sunglasses or sunglasses of equal UV resistance, and
5. repeatedly applying issued sunscreen or sunscreen of equal UV resistance.

15.2 Safe use of forensic light sources

15.2.1. Permanent eye damage can result from direct illumination to the eye of reflected or refractive lighting hitting the eyes that is generated by an intense light source. There are minimum safe distances for persons without eye protection to view the beams of light projected by light sources. Check the operating instructions of the light source to determine the minimum safe distance. If the instructions do not note this distance, contact the manufacturer for the information.

15.2.2. Never look directly into the beam even when wearing protective goggles.

15.2.3. All persons operating a light source or located within the minimum safe distance of a light source being operated must wear adequate eye protection that filters out UV light. Do not use inappropriate or incorrect goggles. Each colour of goggle is designed to cut out the excitation light and allow fluorescence through the filter. If excitation light is visible, a darker colour of goggle should be used.

15.2.4. Any goggle used must filter out UV light wavelengths. Other filtered goggles can be worn as long as they are designed to filter out the UV wavelengths.

15.2.5. Rays of light from a laser can be imaged on a very small area of the retina causing permanent blind spots. As a result, laser beams should never be directed to the eyes.

15.3 Safe use of UV decontamination lights

15.3.1. Laboratories fitted with UV decontamination lights must have a warning system to alert officers that they are operating.

15.3.2. Officers are not permitted to remain in laboratories whilst the decontamination lights are operating.

16 ELECTRICAL HAZARDS

16.0.1 Officers are required to attend scenes of crime where the quality of electrical work cannot be relied on. Many domestic houses and other structures have work that has not been completed by an authorised electrical contractor. It is common for drug producers to use unsafe homemade equipment or circumvent electrical safety devices in order to steal power. Buildings that have been damaged by fire or otherwise are likely to have exposed electrical wiring.

16.1 Electrical safety at scenes

16.1.1. Officers should ensure that power has been disconnected from main power prior to entry into any building that has suffered damage from fire, explosion or other means. Do not assume that other emergency service workers already within the scene have identified all hazards or taken precautions. This includes other fire investigators from the QPS or QFRS.

16.1.2. If mains power is to be used at a scene, officers must first inspect the power board to ensure that appropriate circuit breakers and safety switches have been installed. This includes testing of the safety switch. Officers are not permitted to use mains power if such safety devices are not fitted and working correctly.

16.1.3. An earth leakage device must be used when using a generator.

16.1.4. Alternative power systems pose additional potential risks as these systems may remain live even after the mains power is cut from a premises. Officers need to consult with the senior fire officer to ensure that any alternate power system has been
shut down. If you are performing duties within a ceiling cavity or on a roof top, you also need to ensure that all power supply including any alternate power supply has been isolated. Further information is available on the following QFRS Safety Bulletin.

16.1.5 Where a non-contact tester is used to detect whether or not power is present in a circuit, the tester must be checked for correct operation prior to use.

16.2 Safe use of electrical equipment

16.2.1. All equipment is to be used in accordance with the manufacturer's instructions. Through its design all equipment shall be safe to operate when used for its intended purpose.

16.2.2. Prior to using any electrical outlets, ensure that the outlet is safe and grounded or is on a ground fault interrupter. Do not overload outlets.

16.2.3. Prior to using any electrical outlets, locate the fuse box or circuit breaker box. Be prepared in the event of a need to shut the power down.

16.2.4. The equipment's compliance tag should be checked for its current inspection status before use.

16.2.5. Built-in electrical alarms or controls should be checked if possible to ensure they are in good working order.

16.2.6. Sufficient space/ventilation is to be allowed to prevent equipment from overheating.

16.2.7. Electrical equipment that plugs into a low voltage supply is to be operated with a Residual Current Device (RCD) in the circuit.

16.2.8. Electrical equipment is to be switched off and unplugged prior to cleaning and servicing.

16.2.9. If a piece of electrical equipment is found to be faulty, it must be marked as such and preferably removed from the work area.

16.2.10 Accessible surfaces of any electrical equipment should be cleaned and decontaminated before being sent out for repair.

16.2.11 Only competent persons shall repair or modify electrical equipment.

16.2.12 Repairs on live equipment must only be done when it is not practicable to do the work with the equipment de-energised.

16.2.13 No switch may be operated while an out-of-service or danger tag is attached.

16.2.14 Extension cords should only be used for portable appliances and as temporary fixtures to a fixed appliance where a socket-outlet cannot be immediately installed.

16.2.15 Extension cords are to have adequate current rating for their intended use.

16.2.16 Extension cords or flexible cable are to be located where they are not likely to be physically damaged or where they are likely to be damaged by liquid. Where physical damage is likely, the cord is to be mechanically protected.

16.2.17 Electrical cords and extension leads must be positioned clear of passageways, stairs and general workplace access points and so as not to present a tripping hazard.

16.2.18 Damaged or frayed extension leads must not be used.

16.2.19 Power boards should only be used for temporary power supply. Where their use is unavoidable, a portable power board with safety and overload protection should be used. Care is to be taken to ensure that current ratings are not exceeded. More outlets for permanent supply should be installed where possible. Note: The usual current rating for a General Purpose Outlet is 10amps.

16.2.20 Double adaptors and piggyback plugs are not to be used in workshops or laboratories.

16.2.21 Equipment is not to be used with wet hands or if either the operator or equipment is standing in water.
16.2.22 Sufficient space must be allowed around electrical equipment for its safe operation.

16.2.23 Mains powered equipment should not be used on aluminium ladders.

16.3 Testing of Electrical Equipment

16.3.1 Items of electrical equipment that do not leave the office, will be “Tag and Tested” every five years.

16.3.2 Electrical items that are used in the field are to be “Tag and Tested” every 12 months. It is recommended that a portable safety switch is used when power is derived from an un-verified source. The portable safety switch is to be tested using the inbuilt safety button each time before the safety switch is used.

17 WORKING ALONE

17.1 Wherever practical, forensic officers should be accompanied by another person (officer, complainant or witness) when working. When members are required to work alone, they are to ensure that, prior to commencing work, a SOP for overdue members is in place. The SOP should include:

1. communication procedures with a person nominated as being responsible for the safety and wellbeing of the officer. This could be the FC, OIC or radio operator.
2. the requirement for members to book on and off at the site;
3. when members are thirty minutes or more overdue in contacting the nominated person or section, the nominated person is to take action required to contact and locate the overdue member.

18 MANAGING HEAT STRESS

18.0.1 Forensic personnel are often required to work away from the office environment for protracted periods of time during a shift. It is the responsibility of both the individual and crime scene managers to ensure risks associated with working in warm/hot environments are managed appropriately.

18.0.2 When working in hot conditions, be sure to:

1. Drink enough fluids (see Table below),
2. Take sufficient breaks (see Table below),
3. Avoid dehydrating drinks including caffeine, alcohol and drinks with high sugar levels like most soft drinks and energy drinks, as these can interfere with the rapid absorption of fluids,
4. Where possible, minimise physical exercise and implement control measures to mitigate risks,
5. If possible stay out of the sun when the UV and heat is the strongest between 10am and 3pm and implement control measures to mitigate risks, and
6. Apply sunscreen, wear appropriate cool clothing and a broad brimmed hat depending on the level of PPE required. The forensic requirement for PPE at most crime scenes will require heat stress levels to be continuously monitored in warm/hot environments to mitigate risks. See 18.1 below.

18.0.3 A urine hydration colour chart may assist in the determination of the level of hydration.

18.0.4 The table below is meant as a guide for officers and scene manager only. Officers should document the conditions and their response to mitigate heat stress.
18.1 **Recommended Safe Working Periods for Forensic Officers**

Based on values for heat-acclimatized adult workers under the age of 40 who are physically fit, self rested, and fully hydrated; with the assumptions that *tyvek coveralls, gloves, boots and a respirator are being worn*, adequate water intake and air temperature readings are taken in the shade. The times below are *only an indication and may be adjusted to suit individual circumstances*.

<table>
<thead>
<tr>
<th>Air Temp</th>
<th>Work/Rest Periods</th>
<th>Minimum Drinking Water to have available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Light work ☼</td>
<td>Moderate Work</td>
</tr>
<tr>
<td></td>
<td>Full sun Partly cloudy No Sun ‡</td>
<td>Full sun Partly cloudy No Sun ‡</td>
</tr>
<tr>
<td>24</td>
<td>Normal Schedule</td>
<td>Normal Schedule</td>
</tr>
<tr>
<td>27</td>
<td>30/30 Normal Schedule</td>
<td>Normal Schedule</td>
</tr>
<tr>
<td>29</td>
<td>15/45 Normal Schedule</td>
<td>10/50 Normal Schedule</td>
</tr>
<tr>
<td>32</td>
<td>Caution** 15/45 40/20</td>
<td>Caution** 25/35</td>
</tr>
<tr>
<td>35</td>
<td>Consider alternatives</td>
<td>Consider alternatives</td>
</tr>
</tbody>
</table>

35/25 = 35 minutes work and 25 minutes rest each hour.

‡ No shadows are visible or work is in the shade, at night or inside.

** Indicates very high levels of heat stress are likely.

☼ *The Majority of Crime Scene Work is light work.*
19 PSYCHOLOGICAL WELL BEING

Forensic officers may be exposed to potentially traumatic events as part of their duties. The Queensland Police Service recognises that working in certain specialist areas of policing may involve increased exposure to occupational and/or organisational stressors. In light of this, members who are applying for substantive positions within, transferring or rotating into, certain specialist areas are required to undertake a psychological assessment prior to appointment, in order to determine their initial suitability for performing high-risk duties. This process is often referred to as specialist selection assessment.

In addition, the Psychological Assessment Unit (PAU) conducts confidential psychological health monitoring (PHM) of certain specialist areas on an annual basis. PHM is a proactive strategy designed to facilitate early identification of members who are experiencing psychological distress so that appropriate treatment, intervention and assistance is provided in an effective and efficient manner. This ensures members undertaking high-risk specialist duties are supported in performing at an optimal capacity over the course of their policing careers.

Further information regarding the requirements of participation in either psychological assessment process – i.e. for the purpose of initial selection or ongoing health monitoring – will be provided by the Occupational Psychologist at the time of implementation.

Currently, initial compulsory assessments and voluntary monitoring is provided for Scenes of Crime and Disaster Victim Identification Unit members, however this service is available to all QPS members on a volunteer basis by making contact with the Occupational Psychologist office on 07 30153304 or by e-mail Turvey.LeighT@police.qld.gov.au

Employee Wellbeing page on the Human Resources website may also provide assistance.

20 REPORTING POLICY

Incident and injury reporting procedures are outlined in the Injury / Illness Management policy.

21 HEALTH AND SAFETY AUDITS

Potential risks must be managed and reported through the QPS Work and Safety Structure. Workplace inspections are described in the How to Manage Work Health and Safety Risks - Code of Practice 2011. In addition to these inspections, checks of laboratory safety equipment should be carried out on a quarterly basis. Checks of such safety equipment should be recorded on the FR Service History for each item.

Managers / OIC’s are to ensure that an inspection of the workplace is conducted on a six monthly basis using PFS Admin 30 – Workplace Health and Safety Inspection Checklist. Scanned copies of completed audit reports are to be saved in I:\FSB Shared Folder\FSG_RETURNS\WH&S.

22 REFERENCES, GUIDES AND FORMS

AS/NZS 1892.1 Portable ladders - Metal
AS 1892.2 Portable ladders – Timber
AS/NZS 1892.3 Portable ladders – Reinforced plastic
AS/NZS 1892.5 Portable ladders – Selection, safe use and care
QPS Health and Safety Policies
Workplace Health and Safety Queensland
Work Health and Safety Act 2011
Work Health and Safety Regulation 2011
Health and Safety Guidelines
Police Forensic Services

PFS 109 - Use of Respirator

FTE 114 - Firearms Safety Manual

PFS 11 - Crime Scene Hazard Assessment

PFS 12 - Confined Space Entry Permit

PFS 19 - Emergency Eyewash Inspection

PFS 20 - Emergency Equipment Inspection

PFS 70 - Major Incident Site Safety Plan

PFS 85 - Major Incident - Hazard Assessment

PFS Admin 30 - Workplace Health and Safety Inspection Checklist

QFRS Safety Bulletin on Alternate Power Systems

Safe Work Australia – Managing the Risk of Fatigue

REVISION HISTORY

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Version</th>
<th>Rationale</th>
<th>Author</th>
<th>Authorised By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4/03</td>
<td>1</td>
<td>Initial Documentation</td>
<td>S/Sgt Neville</td>
<td>Insp Keller</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8/03</td>
<td>3</td>
<td>Additional information re Eyewash stations and reference to Firearms Safety Manual added</td>
<td>S/Sgt Neville</td>
<td>Insp Keller</td>
</tr>
<tr>
<td>1/2/04</td>
<td>4</td>
<td>Quarterly checking of Duress Alarms added</td>
<td>S/Sgt Neville</td>
<td>Insp Keller</td>
</tr>
<tr>
<td>1/10/04</td>
<td>5</td>
<td>Hyperlinks updated</td>
<td>S/Sgt Crick</td>
<td>Insp Keller</td>
</tr>
<tr>
<td>1/6/05</td>
<td>6</td>
<td>Information relating to Heat Waves added</td>
<td>S/Sgt Crick</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>1/3/08</td>
<td>7</td>
<td>Location of MSDS’s changed to Chemwatch.</td>
<td>S/Sgt Crick</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>7/5/09</td>
<td>8</td>
<td>Asbestos information added</td>
<td>Insp Neville</td>
<td>S/Sgt Crick</td>
</tr>
<tr>
<td>13/7/09</td>
<td>9</td>
<td>Links relating to Injury reporting updated</td>
<td>S/Sgt Crick</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>28/8/09</td>
<td>10</td>
<td>Bagging of Asbestos updated</td>
<td>S/Sgt Crick</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>9/4/10</td>
<td>11</td>
<td>Lead Contamination powder added</td>
<td>S/Sgt Piper</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>6/5/10</td>
<td>12</td>
<td>Storage of chemicals and working at heights updated.</td>
<td>S/Sgt Crick</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>9/11/10</td>
<td>13</td>
<td>Alternate power source considerations added</td>
<td>A/S/Sgt Von Papen</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>21/12/10</td>
<td>14</td>
<td>Packaging of biological material updated</td>
<td>A/S/Sgt Von Papen</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>6/4/11</td>
<td>15</td>
<td>Wearing of safety glasses when sampling glass and chance of flying particles/</td>
<td>PO L. J. McMenz</td>
<td></td>
</tr>
<tr>
<td>2/9/11</td>
<td>16</td>
<td>Inclusion of provisions when performing work in mines.</td>
<td>Insp Neville</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>22/06/12</td>
<td>17</td>
<td>Complete review of guidelines to coincide with release of new codes of practice and Act.</td>
<td>S/Sgt Crick, AO T Lawrence, A/S/Sgt K Leitch</td>
<td>Insp Neville</td>
</tr>
<tr>
<td>Date</td>
<td>Change</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/2/13</td>
<td>19</td>
<td>Asbestos guidelines updated to include leaving contaminated waste at the scene. Checks of hoists updated. PFS 106 biological spills, PFS 107 Chemical First Aid and PFS 108 Chemical Spills included in this document.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/12/13</td>
<td>21</td>
<td>Updated section 18 on managing work periods in situations likely to induce heat stress. Updated the advice regarding psychological assessments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/12/14</td>
<td>22</td>
<td>Updated Working at Heights to include requirements for ladder use compliance.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents Page